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Multikingdom and functional gut microbiota 
markers for autism spectrum disorder

Qi Su    1,2,9, Oscar W. H. Wong3,4,9, Wenqi Lu1,2, Yating Wan1,2,4, Lin Zhang    1,2, 
Wenye Xu1,2, Moses K. T. Li1, Chengyu Liu1, Chun Pan Cheung1,2, 
Jessica Y. L. Ching1, Pui Kuan Cheong1, Ting Fan Leung    4,5, Sandra Chan3,4, 
Patrick Leung4,6, Francis K. L. Chan1,4,7 & Siew C. Ng    1,2,4,8 

Associations between the gut microbiome and autism spectrum disorder 
(ASD) have been investigated although most studies have focused on the 
bacterial component of the microbiome. Whether gut archaea, fungi and 
viruses, or function of the gut microbiome, is altered in ASD is unclear.  
Here we performed metagenomic sequencing on faecal samples from  
1,627 children (aged 1–13 years, 24.4% female) with or without ASD, with 
extensive phenotype data. Integrated analyses revealed that 14 archaea, 
51 bacteria, 7 fungi, 18 viruses, 27 microbial genes and 12 metabolic 
pathways were altered in children with ASD. Machine learning using 
single-kingdom panels showed area under the curve (AUC) of 0.68 to 0.87 
in differentiating children with ASD from those that are neurotypical. 
A panel of 31 multikingdom and functional markers showed a superior 
diagnostic accuracy with an AUC of 0.91, with comparable performance 
for males and females. Accuracy of the model was predominantly driven by 
the biosynthesis pathways of ubiquinol-7 or thiamine diphosphate, which 
were less abundant in children with ASD. Collectively, our findings highlight 
the potential application of multikingdom and functional gut microbiota 
markers as non-invasive diagnostic tools in ASD.

Autism spectrum disorder (ASD) is a heterogeneous neurodevelop-
mental disorder characterized by social, cognitive and behavioural 
impairments1–3. Although the cause of ASD is unknown, it is believed to 
relate to a complex interplay between genetic and environmental fac-
tors4–6. In the past decade, the gut microbiome has been shown to play 
a central role in modulating the gut–brain axis by regulating neuroim-
mune networks and directly communicating with the brain, and may 
contribute to the development of ASD7. Preclinical studies have shown 
that children with ASD had an altered gut microbiota composition 

and delayed development of the gut microbiota8–13. Furthermore, the 
transfer of faecal microbiota from individuals with ASD into germ-free 
mice promoted autistic-like behaviour14, whereas faecal microbiota 
transplantation from healthy individuals to children with ASD resulted 
in improvements in symptoms15,16. So far, most studies have focused 
on the bacteria component of the gut microbiota and revealed many, 
albeit inconsistent, variations in microbial diversity and composition 
in children with ASD17–19. Metagenomic sequencing technologies have 
enabled the study of other microbial communities including archaea, 
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sample collection, storage and processing (Fig. 1a). All faecal samples 
were processed using the same standardized protocol to reduce the 
batch effects caused by technical factors. In total, we obtained over 
10 terabytes of sequence data at an average depth of 6.34 gigabases 
for each metagenome (Extended Data Fig. 1). In the discovery cohort, 
we performed metagenomic sequencing on faecal samples from  
709 children with ASD and 374 children considered neurotypical 
(age 3–12 years, 24.3% female). In an independent hospital cohort, 
we sequenced a total of 172 faecal samples from 82 children with ASD 
and 90 children considered neurotypical (aged 4–11 years, Fig. 1a). We 
also included a community cohort with younger children consisting 
of 116 children with ASD and 60 children considered neurotypical 
(aged 1–8 years, 29.5% female, Fig. 1a) to validate the findings in differ-
ent age groups. A total of 237 faecal metagenomes (aged 2–13 years, 
17.7% female) from published datasets were included in the analysis 
for external validation (Fig. 1a). Two additional non-ASD cohorts of 
children with attention deficit hyperactivity disorder (ADHD, n = 118) 

fungi and viruses that also colonize the human gut, and these dark 
matters may play a key role in the pathogenesis of ASD20–22.

In this study, we explored multikingdom analyses of gut archaea, 
bacteria, fungi, viruses and their genes and functions, presented 
metagenomic analyses of 1,627 children considered neurotypical or 
with ASD, with extensive phenotype data, and validated our findings 
in public datasets of 237 faecal metagenomes.

Results
Study characteristics
A total of 1,627 children (aged 1–13 years, 24.4% female) from five 
independent cohorts were recruited in this study (Fig. 1a and Extended 
Data Table 1). Extensive phenotypic data (236 factors) were collected 
including age, sex, body mass index (BMI), diet, medication, comor-
bidity, concomitant psychiatric disorders, gastrointestinal (GI) 
symptoms (including stool consistency assessed by Bristol stool form 
score, BSFS), family characteristics and technical factors related to 
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Fig. 1 | Associations between ASD and faecal microbiome composition. 
a, Graphical summary of the cohorts and overview of available metadata 
(n = number of variables collected, N = sample size). b, Variance in multikingdom 
(archaea, bacteria, fungi and viruses) microbiome composition explained by 
phenotype groups in multivariate PERMANOVA analysis. c, Alpha diversity in 
multikingdom (archaea, bacteria, fungi and viruses) microbiome measured 
by Shannon index of children with ASD (red, n = 709) and children considered 
neurotypical (NT, blue, n = 374). P value (two-sided test) was calculated using 

MMUPHin. Data are shown in boxplots as the median (centre line), 25th and 75th 
percentiles (box limits), and 5th and 95th percentiles (whiskers). d, Volcano 
plots show the associations between multikingdom (archaea, bacteria, fungi 
and viruses) species and ASD calculated using MaAsLin2 after adjusting for 
significant confounders. Associations with FDR < 0.05 were considered as 
significant and marked in red (enriched in ASD) or blue (depleted in ASD).  
Top-ranked species are labelled with name.
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and atopic dermatitis (n = 78) were used to evaluate the specificity 
of our findings (Fig. 1a).

ASD-associated microbial species in four kingdoms
As gut microbiota composition is largely shaped by environmental and 
host factors23,24, we analysed the impact of 236 host factors on the gut 
microbiome composition to determine potential confounders (Fig. 1a). 
In our discovery cohort (age 3–12 years, n = 1,083, 24.3% female), these 
host factors in combination explained 12.5%, 15.1%, 10.7% and 11.7% of 
the interindividual microbiome variation for archaea, bacteria, fungi 
and viruses, respectively (Fig. 1b). Among all host and dietary factors 
studied, a total of 21 factors showed a significant impact on gut micro-
biota composition, including ASD, age, sex, BMI, 3 GI parameters, 15 
dietary factors and sequencing batch (Extended Data Fig. 2), therefore 
these factors were adjusted in all subsequent analyses. We next assessed 
changes in gut microbiota diversity between children considered neu-
rotypical and children with ASD. Children with ASD showed a decrease 
in the diversity of archaea, bacteria and viruses compared with children 
considered neurotypical (Fig. 1c). A total of 14 archaeal, 51 bacterial, 7 
fungal and 18 viral species showed differential abundances between 
children considered neurotypical and children with ASD (Fig. 1d). The 
relative abundance of 80 out of 90 identified microbial species was 
found to be significantly decreased in children with ASD compared 
with children considered neurotypical (Fig. 1d). This finding was most 
pronounced for the bacterial communities, where 50 bacterial species 
were depleted in children with ASD whereas only one bacteria species 
was enriched (Fig. 1d). Alterations in bacterial species in children with 
ASD were driven by the depletion of Streptococcus thermophilus and 
short-chain fatty acids-producing bacteria, such as Bacteroides sp. 
PHL2737 and Lawsonibacter asaccharolyticus.

Alterations of gut microbiota function in ASD
At functional level, host phenotype factors explained 17.1% and 15.7% of 
the variation in microbiome pathways and microbial genes, respectively 
(Fig. 2a). A diagnosis of ASD ranked as the top factor accounting for the 
variation in both microbiome pathways and microbial genes (Fig. 2a). A 
total of 19 host and diet factors showed a significant impact on the gut 
microbiome function, including ASD, age, sex, BMI, 2 GI parameters, 
12 dietary factors and sequencing batch (Extended Data Fig. 3). After 
adjusting for these confounders, we identified 27 differential Kyoto 
Encyclopedia of Genes and Genomes (KEGG) orthology (KO) genes:  

23 were decreased and 4 were increased in children with ASD com-
pared with children considered neurotypical (Fig. 2c). At the pathway 
level, 12 differential pathways were noted, including 9 pathways show-
ing negative associations and 3 showing positive associations with 
ASD (Fig. 2b). We found that biosynthesis pathways of ubiquinol-7 
and thiamine diphosphate were reduced in children with ASD com-
pared with children considered neurotypical (Fig. 2b). Ubiquinol 
exhibits antioxidant activity and has been identified to be capable 
of improving symptoms in children with ASD25,26. Impairment of 
thiamine diphosphate synthesis has been associated with ASD and 
other mental disorders in both animal and human studies27–30. We also 
observed a negative association between ASD and the shunt pathway 
of 4-aminobutyric acid (GABA). GABA is a major inhibitory neuro-
transmitter of the mammalian central nervous system and has been  
associated with ASD in previous studies31–33.

Single microbial kingdom markers for ASD diagnosis
Bacterial markers for ASD diagnosis have been explored in several stud-
ies8,9,34. However, the performance of archaea, fungi, viruses, microbial 
genes (KO families) or function pathways has not been explored in 
ASD. To avoid discrimination bias driven by imbalanced sample size 
and residual confounders, we constructed a matched subcohort of 
children with ASD (n = 301, 95 girls and 206 boys) and children con-
sidered neurotypical (n = 301, 95 girls and 206 boys) using one-to-one 
pairing algorithm24,35, based on the discovery cohort (n = 1,083, Fig. 3a). 
After matching, there was no difference in these confounders between 
children considered neurotypical and children with ASD within the 
matched subcohort (Extended Data Fig. 4). These results illustrated 
a comparable environmental and host background in children con-
sidered neurotypical or with ASD, thus our model is less likely to have 
been affected by these important factors24 (Fig. 3a).

Within the matched cohort, we first tested the accuracy of models 
using single-kingdom markers to distinguish children with ASD from 
children considered neurotypical. Among all single-kingdom markers, 
the microbial pathway model displayed the strongest predictive ability 
to detect ASD with an average area under curve (AUC) of 0.87 (Fig. 3b), 
followed by microbial genes (AUC 0.86), bacteria (AUC 0.85), archaea 
(AUC 0.76), fungi (AUC 0.74) and viruses-based (AUC 0.68) models 
(Fig. 3b). Collectively, our findings demonstrate that faecal microbi-
ome markers from different kingdoms provide promising predictive 
capabilities for ASD diagnosis.
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Multikingdom microbial markers for ASD diagnosis
We next explored the performance of the model combining multiking-
dom features. We found that the ensembled model showed superior 
performance (average AUC 0.91) for the diagnosis of ASD compared 
with models based on single-kingdom features (Fig. 3b). These results 
confirmed that the multikingdom faecal microbiome biomarker 
panel had a higher diagnostic performance for detecting ASD than 
single-kingdom panels. To identify the minimal number of microbi-
ome markers that achieve the highest accuracy, we included identified 
markers consecutively into the model according to their ranking, and 
finally, a total of 31 microbial features showed an AUC of 0.91 for the 
diagnosis of ASD (Fig. 3b). The prevalence and relative abundance of 
these 31 markers differed significantly between children considered 

neurotypical and children with ASD (Fig. 3c). Based on MasAsLin2, 21 
markers were significantly depleted whereas 10 markers were signifi-
cantly enriched in children with ASD (Fig. 3d). We re-analysed the impor-
tance of these 31 features and observed that the accuracy of the model 
was driven predominantly by the ubiquinol-7 biosynthesis pathway, the 
GTPase and the thiamine diphosphate biosynthesis pathways (Fig. 3e), 
which support their potential role in ASD pathogenesis. In addition, the 
depletion of several bacteria, including Streptococcus thermophilus, 
Lawsonibacter asaccharolyticus, Weissella confuse, Weissella cibaria 
and Bacteroides sp. PHL2737, were also the top-ranked microbial fea-
tures contributing to the diagnostic accuracy (Fig. 3e). Collectively, our 
analysis shows that a 31-faecal microbiome marker panel represents 
a potentially promising non-invasive tool for the diagnosis of ASD.
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Validations in independent cohorts and public datasets
To externally validate the diagnostic value and to avoid over-optimistic 
reporting of diagnostic accuracy, we tested the 31-marker panel in an 
independent hospital cohort. We found that our models maintained an 
AUC ranging from 0.55 to 0.87 (Fig. 4a). Among them, the ensembled 
model using 31 markers ranked first in AUC at 0.87, with a sensitiv-
ity of 91% and a specificity of 73% (Fig. 4a). The relative abundance 
of the 28 out of 31 markers remained significantly different between 
children considered neurotypical and children with ASD (Fig. 4b). Fur-
thermore, our models showed an AUC ranging from 0.61 to 0.89 in a 
younger subset of children in this validation cohort (n = 31, 6 years 
old or younger), where the ensembled model using 31 markers again 
achieved the highest accuracy (Extended Data Fig. 5). We also tested 

whether this panel could be applied to predict the risk of ASD in another 
younger cohort (116 children with ASD and 60 children considered 
neurotypical, 1–8 years old, 29.5% female, Extended Data Table 2). The 
trained model achieved an AUC of 0.89, with a relatively balanced per-
formance for males and females. When reducing the age range to 6 years 
or younger and 4 years or younger, the model showed AUCs of both 
0.91. We tested the associations between these 31 markers and ASD 
in this younger cohort stratified by age and confirmed that most of 
these associations were still reproducible (Fig. 4b and Extended Data 
Fig. 6). Taken together, these results demonstrate the robustness of our 
trained model and the 31-marker panel across ages, sexes and cohorts.

To further test the reproducibility of our 31-marker multiking-
dom panel across different populations, we integrated 237 shotgun 

1 - specificity
1.00.80.60.40.20

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0

Validation of the trained models on the independent 
hospital cohort  (ASD vs TD, 82 vs 90, Age 4–11)

Top 31 Markers
Ensembled

Pathways
KO genes

Bacteria

Viruses
Fungi

Archaea

AUC = 0.87 (0.81–0.93)
AUC = 0.83 (0.77–0.99)
AUC = 0.83 (0.76–0.89)
AUC = 0.71 (0.63–0.79)
AUC = 0.65 (0.56–0.74)
AUC = 0.65 (0.56–0.74)
AUC = 0.61 (0.52–0.70)
AUC = 0.55 (0.46–0.64)

a

1 - specificity
1.00.80.60.40.20

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0

ADHD vs NT

AUC = 0.513, P = 0.809 

1 - specificity
1.00.80.60.40.20

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0

Atopic dermatitis vs 
control

AUC = 0.575, P = 0.157

c Validation of the trained model on unrelated disease cohorts 

Sensitivity Specificity Accuracy
Archaea 50% 67% 58%
Viruses 46% 72% 59%

Fungi 82% 50% 66%
Bacteria 68% 67% 67%

KO genes 45% 91% 68%
Pathway 88% 68% 78%

Ensembled 86% 71% 78%
Top 31 Markers 91% 73% 82%

−0.46

−0.22

−0.12

−0.47

−0.11

−0.35

−0.18

0.19

−0.77

−0.12

−0.59

0.20

0.76

0.47

−0.59

−0.93

−0.11

−0.15

−0.92

−0.12

0.19

0.59

0.52

0.38

0.22

−0.61

−0.63

−0.78

0.20

−0.15

−0.13

−0.18

−0.25

−0.18

−0.17

−0.18

−0.22

−0.17

0.13

−0.37

−0.28

−0.17

0.25

0.13

−0.27

0.13

−0.20

−0.18

−0.15

0.16

0.27

0.21

0.13

0.11

−0.20

−0.11

0.13

−0.14

−0.11

−0.21

−0.13

−0.12

−0.27

−0.14

−0.14

0.12

−0.10

0.13

0.14

0.12

−0.14

−0.13

0.12

0.19

0.18

0.11

−0.13

0.12

−0.11

0.08

0.12

0.12

−0.14

0.14

0.10

−0.5

0.5
Ubiquinol-7 biosynthesis (PWY5855)

GTPase (K07588)

Thiamine diphosphate biosynthesis (PWY6895)

Streptococcus thermophilus

Mevalonate pathway I (PWY922)

Lawsonibacter asaccharolyticus

Aspartate racemase (K01779)

Peptidylprolyl isomerase (K01802)

Weissella confusa

GABA Shunt (GLUDEG-I-PWY)

Weissella cibaria 

TCA cycle I (TCA)

Alistipes onderdonkii

Virgibacillus sp.6R

Bacteroides sp.PHL2737

Candida albicans

Palmitoleate biosynthesis I (PWY6282)

Aminomethyl_phosphonate degradation (PWY7805)

Faecalibacterium phage FP_Lugh

Phosphomannomutase  (K01840)

Uracil phosphoribosyltransferase (K00761)

Dialister hominis

Streptomyces phage YDN12

Aspergillus nidulans

Natrinema pellirubrum

Haloterrigena sp. BND6

Bacteroides stercoris

Anaerobic sucrose degradation (PWY7345)

Menaquinol-8 biosynthesis III (PWY7992)

Peptidoglycan biosynthesis III (PWY6385)

Associations between ASD and 31 markers
across six cohorts in this study

b

Disc
ove

ry

Hosp
ita

l

Community
ADHD

Atopic derm
ati

tis

Streptococcus phage Sfi19

Fig. 4 | Validation of the random forest models. a, AUC (95% CI) of random 
forest models employing different features in the validation cohort.  
The sensitivity, specificity and accuracy were calculated on the basis of the 
Youden index. AUCs were calculated after adjustment for technical factors 
and available covariates including age, sex, BMI, BSBF, functional constipation 

and defecation disorders. b, Associations between ASD and 31 identified faecal 
microbiome markers across five cohorts calculated using MaAsLin2 (two-sided 
test). The Coef. value was only marked when P < 0.05. c, AUC of model using 31 
markers tested in the independent ADHD and atopic dermatitis cohorts. P values 
were calculated using Wilcoxon rank-sum test (two-sided test).

http://www.nature.com/naturemicrobiology


Nature Microbiology

Article https://doi.org/10.1038/s41564-024-01739-1

faecal metagenome data from six public datasets from Asia, Europe 
and America36–41 (Extended Data Fig. 7a). The panel showed an AUC 
of 0.78 in differentiating children with ASD from children considered 
neurotypical, with a sensitivity of 65.30% and a specificity of 72.4% 
(Extended Data Fig. 7b). More importantly, it showed comparable 
performance for males and females, confirming the applicability of 
our model to both sexes (Extended Data Fig. 7b). Overall, this 31-marker 
multikingdom panel may be relevant across different populations and 
geographical locations.

Specificity of the multikingdom marker panel
Considering shared microbiota alterations across different diseases23,42, 
it is important to verify the disease specificity for our identified micro-
bial biomarkers panel to ensure a low false positive rate for the diagnosis 
of ASD. For this purpose, we assessed our trained model in two non-ASD 
cohorts in children with attention deficit hyperactivity disorder (ADHD, 
n = 118) or atopic dermatitis (n = 78; Fig. 1a). ADHD and atopic dermatitis 
have been reported to be associated with alterations in the gut micro-
biota43–46. AUC values of our marker panel were lower in children with 
atopic dermatitis or ADHD (AUC 0.51) and atopic dermatitis (AUC 0.58; 
Fig. 4c). In addition, only 17 of the tested participants were predicted 
to have ASD by the trained model, reflecting a low false positive rate of 
8.7%. Overall, these results support the specificity of the 31-biomarker 
multikingdom panel for ASD.

Decreased ubiquinol-7 and thiamine diphosphate in ASD
Previous studies suggested that ubiquinol improves symptoms in 
children with ASD25,26. Decreased concentrations of plasma thiamine 
(vitamin B1) and its related metabolites, such as thiamine diphosphate, 
have been implicated in ASD47–49. However, the reasons underlying these 
observations are still unclear. We found that the relative abundance of 
the ubiquinol-7 biosynthesis pathway and the thiamine diphosphate 
biosynthesis pathway predominantly drove the accuracy of our diag-
nosis model and exhibited a consistent reduction in children with ASD 
across three cohorts compared with children considered neurotypical 
(Fig. 4b). A total of 17 enzymes were involved in these two pathways, 
and most of them were depleted in children with ASD across different 
cohorts (Extended Data Fig. 8). Altogether, these findings highlight 
that decreased abundance of ubiquinol-7 and thiamine diphosphate 
biosynthesis genes in the gut microbiota appeared to be strongly asso-
ciated with ASD.

Discussion
Most studies have primarily focused on gut bacterial alterations in 
ASD50–52. Recently, investigations have revealed the critical roles of 
non-bacterial microorganisms, such as archaea, fungi and viruses in 
the gut–brain axis21,22. However, they are rarely explored in ASD. In this 
study, we performed a comprehensive analysis of the multikingdom 
and functional microbiome using over 1,600 metagenomes across 5 
independent cohorts in children. We showed that archaeal, fungal, 
viral species and functional microbiome pathways could also separate 
children with ASD from children considered neurotypical. We dem-
onstrated that a model based on a panel of 31 multikingdom markers 
achieved high predictive values for ASD diagnosis. The reproducible 
performance of the models across ages, sexes and cohorts highlights 
their potential as promising diagnostic tools for ASD.

We discovered a series of bacterial and non-bacterial markers and 
profiled their associations with ASD. Among them, we observed several 
beneficial bacteria, such as Streptococcus thermophilus53, Weissella 
confusa54 and Weissella cibaria55,56 that exhibited negative associations 
with ASD. Several bacterial markers for ASD have also been reported 
in previous studies, such as Bacteroides stercoris57. However, very few 
studies have looked at the association between ASD and archaea, fungi 
and viruses, therefore these markers we reported require further explo-
ration in future studies. In addition, we found that specific microbial 

functions may contribute to ASD pathogenesis via the deregulation of 
ubiquinol and thiamine diphosphate biosynthesis47–49. Ubiquinol and 
thiamine-related metabolites play crucial roles in mental health and 
neural signal transduction29,58. Our findings provided further evidence 
that thiamine diphosphate biosynthesis of the gut microbiome may 
also serve as a therapeutic target in the future.

Although several studies have attempted to identify reproducible 
microbial biomarkers for ASD8,9,34, adequate validations in different 
cohorts are scarce. The lack of agreement across studies raises the ques-
tion of whether microbial results obtained so far reflect intrinsic bio-
logical differences across cohorts, experimental biases or inadequate 
statistical power to preclude meaningful comparisons. On the basis of 
our ASD metagenomic dataset, we systematically evaluated the impact 
of host variables and technical factors on gut microbiota, and we fully 
adjusted the identified confounders throughout the analysis. Also, a 
matching algorithm for developing the machine learning model was 
adopted from a previous study which showed that mismatched host 
variables induce significant overestimation of AUC for binary classifi-
cation of human diseases, as the unmatched confounders will reduce 
the machine learning model’s ability to focus on the disease itself 
and therefore decrease its robustness across cohorts24. Furthermore, 
although the method of undersampling the majority class and then 
adding the environmental/technical factors as additional covariates 
in a mixed model is traditional, it may be more challenging to apply 
clinically given that data other than faecal microbiome will need to be 
collected and are harder to interpret biologically in real-life settings; 
therefore, a solely faecal microbiome-based random forest model was 
employed to achieve the prediction of ASD in this study. Finally, we 
showed superior diagnostic accuracy for models constructed using 
multikingdom and function markers than single-kingdom markers, 
in particular the addition of microbial pathways which has also been 
shown to have high diagnostic and prognostic value in other human 
diseases59,60. Moreover, models based on the 31-marker panel achieved 
very high predictive values for ASD diagnosis with robust performance 
across cohorts, ages and sexes. Although there is no disease-modifying 
treatment available for ASD, early identification of the disorder for 
comprehensive evaluation and initiation of training has been shown to 
lead to better social and behavioural outcomes. Our model has promis-
ing potential for clinical application and warrants further exploration. 
Moreover, the 31-marker panel included several archaea, fungi and 
viruses, highlighting the pivotal roles of non-bacterial microorganisms 
as diagnostic ASD biomarkers. The correlations among multikingdom 
species may also be developed into complex microbiota assemblies 
that serve as ecological drivers in the pathogenesis of ASD. However, 
the functional capabilities of these multikingdom associations have 
not been investigated and deserve further analysis.

There has been a heated debate about whether ASD-associated 
gut dysbiosis is driven solely by dietary preferences12,61. Our results 
showed that diet has an impact on the gut microbiome in children 
with ASD. However, ASD-associated microbiome alterations including 
microbial diversity and composition remained present after correc-
tion for dietary factors in our analysis. At the same time, to avoid our 
diagnostic model being misled by environmental and host factors, 
we have constructed a fully matched training cohort on the basis of a 
one-by-one pairing algorithm24,35, which therefore reduced the influ-
ence of confounding factors and might explain the robustness of our 
model across cohorts. We have also included an analysis of two com-
mon childhood diseases known to have an association with gut micro-
biome alterations, atopic dermatitis and ADHD, and demonstrated that 
our 31-marker panel remained specific to ASD diagnosis.

Analysis of children cohorts that are heterogeneous in life-
style, ethnicity and location presents a distinct opportunity for 
studying ASD-associated microbiome. By combining multiple small 
hospital-based and community cohorts of potentially low generaliz-
ability, we were able to obtain a better representation of the spectrum 
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of ASD cases and controls. However, this study has some limitations. 
Our understanding of how the gut microbiome is linked to dietary 
preferences, host immunity and GI and ASD behavioural symptoms 
is limited in cross-sectional studies, hence current data restrict our 
ability to perform causal inference. Although we did not analyse the 
effect of genotype on the microbiome, previous studies have iden-
tified genes that are at high risk for ASD6,62. Prospective studies of 
genetic markers in combination with microbiome panels are needed 
to establish whether they can further elevate the diagnostic accuracy 
to predict ASD earlier for disease prevention. In addition, although a 
previous study has fully characterized the matching algorithm24, it 
may also introduce unknown biases into the results, thus independent 
validation and testing for the trained models are necessary. We have 
initially demonstrated the robustness of our model across cohorts 
and ages, with a low sensitivity to unrelated diseases including ADHD 
and atopic dermatitis, but a prospective validation trial of our models 
across the entire spectrum of neurodevelopmental conditions, com-
mon physical diseases of children and geographical locations would 
be highly needed to further demonstrate the universality and clinical 
applicability of these markers. Lastly, although our model shows good 
performance across ages, sexes and cohorts as well as the public data-
set, there might be a residual possibility of unmeasured confounders 
or batch effects which are hard to avoid and may potentially lead to 
inflated performance, hence independent third-party validation is 
warranted before clinical application.

In conclusion, this study presents a highly specific multikingdom 
microbial panel for non-invasive diagnosis of ASD. Development of 
reproducible microbiome biomarkers and accurate disease predic-
tive models from combined analyses of heterogeneous ASD forms 
the basis for future clinical diagnostic tests and hypothesis-driven 
mechanistic studies.

Methods
Ethics statement
This research complies with ethics regulations, with protocol approved 
by the Joint Chinese University of Hong Kong-New Territories East Clus-
ter Clinical Research Ethics Committee (the Joint CUHK-NTEC CREC). 
Written consent was obtained from the children’s parents.

Study population
Discovery ASD cohort. Children considered neurotypical or with 
ASD aged less than 12 years of age were recruited from the Child 
and Adolescent Psychiatric Clinic of the New Territory East Cluster 
(NTEC) of the Hospital Authority from December 2021 to Decem-
ber 2023. The NTEC serves one of the largest populations in Hong 
Kong, of which the Child and Adolescent Psychiatric Clinic receives 
constant referrals from the Child Assessment Centre, school educa-
tion psychologists and private medical doctors for the assessment 
and treatment of children with ASD. The diagnosis of ASD was made 
by child psychiatrists on the basis of the Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition (DSM-5) diagnostic crite-
ria63. Children considered neurotypical that were matched on age and 
sex to children with ASD were invited from participants of an ongo-
ing territory-wide psychiatric epidemiological study (CREC Ref. No. 
2018.497) in the same Child and Adolescent Psychiatric Clinic where 
over 6,000 random community-based youths were assessed on the 
presence of psychiatric disorders using the Diagnostic Interview 
Schedule for Children (DISC-5). To exclude the possibility of ASD 
from these community participants, children considered neurotypi-
cal were first screened using the Chinese Autism Spectrum Quotient 
Child Version64 (AQ-Child, for children up to 11 years old). Exclusion 
criteria for children considered neurotypical included a positive fam-
ily history of ASD among first-degree relatives, screening positive 
in the AQ-Child and the presence of psychiatric disorder according 
to the DISC-5. Exclusion criteria for both groups included mental 

retardation, neurological disorders, psychosis, depressive disorders 
or other major medical illness and avoidant/restrictive food intake 
disorder assessed by a 3-day food record questionnaire. Participants 
using probiotics, antidepressants, anti-epileptics and those who had 
exposure to antibiotics within 1 month before entering the study were 
also excluded. Children’s parents or legal guardians were informed of 
the nature of the study and written informed consent was obtained. 
The study protocol followed the Declaration of Helsinki.

After recruitment, parent/guardian-filled questionnaires and med-
ical records were used to profile each participant in the following areas: 
(1) social demographics: family composition, education level of par-
ents, household income, number of siblings; (2) physical parameters 
of body height and weight; (3) presence of common physical diseases 
in children such as atopic dermatitis and asthma (n = 14); (4) common 
co-occurring psychiatric disorders such as ADHD (n = 7); (5) the pres-
ence of functional gastrointestinal disorder, defined according to the 
Rome IV Criteria, including three broad categories of functional nausea 
and vomiting disorder (FNVD), functional abdominal pain disorders 
(FAPD), functional defecation disorders (FDD) and stool consistency 
assessed by the BSFS (n = 4); (6) medication history including the use 
of psychiatric medications (n = 7); (7) parental parameters (n = 5) and 
(8) dietary patterns (assessed by food consumption within 3 months, 
n = 201). Finally, 709 children with ASD and 374 children considered 
neurotypical (24.3% female) of Chinese ethnicity aged between 3 and 
12 years old were recruited.

Independent hospital ASD cohort. To independently validate the per-
formance of the selected markers and trained models, we performed 
metagenomics analysis on an independent historical hospital cohort 
recruited in 2018 from the Child and Adolescent Psychiatric Clinic and 
consisting of 172 boys (90 children considered neurotypical and 82 
participants with ASD, 4–11 years old). The neurotypical boys screened 
negative on the AQ-Child with parent-reported absence of psychiatric 
diagnosis. Otherwise, the inclusion and exclusion criteria were the 
same as those of the discovery cohort. It was also ascertained by the 
research team that there was no overlapping of participants between 
the historical cohort and the discovery cohort as they were recruited 
from the same Psychiatric Clinic.

Independent community ASD cohort. To validate the accuracy of the 
selected markers and trained models for ASD detection in the commu-
nity setting, an independent community cohort consisting of children 
considered neurotypical or with ASD of younger ages was recruited 
from March 2022 to December 2023. These children were recruited 
from the families of service users in a community-based educational 
support programme. Other than a self-reported diagnosis of ASD, the 
parents had to submit a formal medical certificate from a qualified psy-
chiatrist, paediatrician or psychologist to confirm the ASD diagnosis 
before the child was recruited as the case group. Children considered 
neurotypical not related to the case group were recruited as the control 
group according to the same inclusion and exclusion criteria as above. 
Finally, 116 children with ASD and 60 children considered neurotypical 
(29.5% female) of Chinese ethnicity aged between 3 and 12 years old 
were recruited.

Independent ADHD cohort. To validate the specificity of the selected 
markers and trained models for ASD detection, an independent cohort 
consisting of children with ADHD and children considered neuro-
typical was recruited from the community under the same study and 
sampling frame as the independent ASD community cohort. Partici-
pants with a confirmed diagnosis of ADHD based on the ADHD rat-
ing scale (ADHD-RS)65 and Test of Variables of Attention (T.O.V.A)66 
were recruited as the case group. Children considered neurotypi-
cal not related to the case group were recruited as the control group 
according to the same inclusion and exclusion criteria as above.  
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Finally, 42 children with ADHD and 76 children considered neuro-
typical (38.1% female) of Chinese ethnicity aged between 1 and  
13 years old were recruited.

Independent atopic dermatitis cohort. To validate the specificity of 
the selected markers and trained models for ASD detection, an inde-
pendent cohort consisting of children with or without atopic dermatitis 
was recruited. Children were clinically examined by a paediatrician 
for signs of atopic dermatitis on the basis of Hanifin and Rajka crite-
ria67, and those with a diagnosis of atopic dermatitis were recruited as 
the case group. Children without any sign of atopic dermatitis were 
recruited as the control group. Written consent was obtained from the 
children’s parents. The study was approved by the Joint CUHK-NTEC 
CREC (CREC Ref. No. 2016.637). Finally, 40 children with atopic der-
matitis and 38 controls (47.4% female, 1 year old) of Chinese ethnicity 
were recruited.

HK$200 worth of supermarket coupons were given to each par-
ticipant. No statistical methods were used to predetermine sample 
sizes, but our sample sizes are similar to those reported in previous 
publications59,68.

Phenotype data cleaning and preprocessing
Most host variables for comorbidities, unrelated mental disorders, GI 
parameters and medication history were defined as binary with a posi-
tive and negative class. Beyond binary variables, the stool consistency 
was assessed uisng BSFS, which is a categorical variable from 1 to 7  
(ref. 69). Within parental parameters, educational level was defined 
as a categorical variable from ‘primary’, ‘secondary’ to ‘tertiary or 
above’, and household income was divided into ‘below HK$10,000’, 
‘HK$10,001–HK$30,000’, ‘HK$30,001–HK$50,000’ and ‘over 
HK$50,000’. Potential confounding factors with continuous values 
were transformed into discrete variables as quartiles.

Stool sample collection
Faecal samples were collected at home by all participants using tubes 
containing Norgen preservative media (63700, Norgen Biotek) pre-
pared by investigators. The Norgen preservative can preserve and allow 
safe transportation of microbial DNA and RNA at ambient temperature 
and eliminated sample variability. Stool samples were delivered to the 
hospital within 24 h of collection and stored at −80 °C refrigerators 
until further processing. We have previously shown that data on the 
gut microbiota composition generated from faecal samples collected 
using this preservative medium was comparable to data obtained 
from fresh samples that were immediately stored at −80 °C70. Also, 
the storage times were comparable between cases and controls in all 
involved cohorts.

Stool DNA extraction and sequencing
To avoid potential batch effects from sample processing and sequenc-
ing, all faecal samples from each cohort were handled in a random 
sequence according to the same protocol. Briefly, after removing 
the preservative media, microbial DNA was isolated with the Qia-
gen DNeasy PowerSoil Pro kit, according to manufacturer instruc-
tions. After the quality control procedures using Qubit 2.0, agarose 
gel electrophoresis and Agilent 2100, extracted DNA was subjected 
to DNA libraries construction, completed through the processes 
of end repairing, adding A to tails, purification and PCR amplifica-
tion, using Illumina DNA Prep (M) Tagmentation. Libraries were 
subsequently sequenced on our in-house Illumina NovaSeq ssytem  
(150 base pairs, paired-end). ZymoBIOMICS Microbial Community 
Standard (D6300, ZYMO Research) and ZymoBIOMICS Microbial 
Community DNA Standard (D6306) were used as positive controls 
during DNA extraction, library construction, sequencing and qual-
ity assessment, while resequencing was performed when abnormal 
signals were detected.

Sequencing data preprocessing
Raw sequence data were quality filtered using Trimmomatic (v.39) 
to remove the adaptor, low-quality sequences (quality score <20) 
and reads shorter than 50 base pairs71. The remaining reads were 
mapped to the mammalian genome (hg38, felCat8, canFam3, 
mm10, rn6, susScr3, galGal4 and bosTau8 were collected from UCSC 
Genome Browser at https://genome.ucsc.edu/) and bacterial plas-
mids (National Center for Biotechnology Information (NCBI) RefSeq 
database accessed in January 2023 at https://www.ncbi.nlm.nih.gov/
refseq/), complete plastomes (NCBI RefSeq database accessed in 
January 2023 at https://www.ncbi.nlm.nih.gov/refseq/) and UniVec 
sequences (NCBI RefSeq database accessed in January 2023 at https://
www.ncbi.nlm.nih.gov/refseq/) using bowtie2 (v.2.4.2)72; matching 
reads that were potentially host-associated and laboratory-associated 
sequences were removed as contaminant reads using KneadData 
v.0.6. GNU parallel (v.3.0) was used for parallel analysis jobs to accel-
erate data processing.

Microbial taxonomic and functional profiles
According to previous studies59,73, the taxonomic classification of 
bacteria, archaea, fungi and viruses was assigned to metagenomic 
reads using Kraken 2 (v.2.1.2), an improved metagenomic taxonomy 
classifier that utilizes k-mer-based algorithms74. A custom database 
consisting of bacterial, archaeal and viral reference genomes from the 
NCBI RefSeq database (accessed in January 2023) and fungal reference 
genomes from the NCBI RefSeq database (accessed in January 2023), 
FungiDB (http://fungidb.org) and Ensemble (http://fungi.ensembl.
org, accessed in January 2023) was built using Jellyfish (v.2.3.0) by 
counting distinct 31-mers in the reference libraries, with each k-mer in a 
read mapped to the lowest common ancestor of all reference genomes 
with exact k-mer matches75. Thereafter, each query was classified to a 
specific taxon with the highest total k-mer hits matched by pruning the 
general taxonomic trees affiliated with the mapped genomes. Bracken 
(v.2.5.0) was used to accurately estimate taxonomic abundance76, 
especially at the species and genus level, based on Kraken 2. The read 
counts of species were converted into relative abundance for further 
analysis. Microbiome functional pathways and KO gene families were 
profiled using HUMAnN (v.3.0) and transformed into relative abun-
dance before analysis. The microbiome data were transformed via the 
centred log-ratio (CLR) transformation using the geometric mean of 
relative abundances of these features as the CLR denominator to break 
the compositionality of the data and normalize skewed distributions 
of microbiome features using the R package ‘compositions’ (v.2.0-5)77. 
After transformation, the data distribution was assumed to be normal, 
but this was not formally tested.

Calculation of microbiome–phenotype associations
The proportion of variance in microbiome composition that can 
be explained by phenotypes was simultaneously calculated by per-
mutational multivariate analysis of variance (PERMANOVA) using 
distance matrices (adonis) implemented in the adonis function of the 
R package vegan (v.2.6-4)78 following a previous study23. Analysis was 
performed on the microbiome beta-diversity (Bray–Curtis distance 
matrix calculated using relative abundances of microbial species) and 
phenotypes using the adonis2 implementation of the PERMANOVA 
algorithm in R with 9,999 permutations. To calculate the proportion 
of microbiome functional potential explained by phenotypes, an 
equivalent analysis was performed on the Bray–Curtis distance matrix 
calculated using relative abundances of MetaCyc microbial biochemi-
cal pathways and KO genes. The total proportion of microbiome com-
position variance and function explained by groups of phenotypes 
was calculated by multivariate adonis analyses. The analyses were 
performed for each kingdom separately, and all factors that have a 
significant impact on any kingdom are presented and employed for 
the subsequent analysis.
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The diversity of microbiome was measured using Shannon index 
and richness (defined by the observed number of species), and the 
difference in microbiome diversity between children with ASD and 
children considered neurotypical was calculated using MMUPHin 
(v.1.18.0)79 after adjustment for the above-identified significant con-
founders. The associations between each microbiome feature (micro-
bial taxa at species level, MetaCyc pathways and KO genes) and ASD 
were calculated using MaAsLin2 (v.1.4.0)80, which relies on general 
linear models and offers a variety of data exploration, normalization 
and transformation methods. To correct for potential confounders, the 
association analysis included all phenotypes that showed significant 
association (P < 0.05) with microbiome composition or function in 
the above analyses.

Subcohort of children considered neurotypical or with ASD
To avoid prediction bias driven by the imbalanced sample size of chil-
dren with ASD (n = 709) and children considered neurotypical (n = 374) 
in the original discovery cohort and to account for potential confound-
ers, we constructed a fully paired subcohort with equal number of cases 
and controls for marker selection and model training. The method used 
for building such a fully paired cohort with a balanced sample size of 
children considered neurotypical and with ASD was adopted from pre-
vious studies24,35. Briefly, the pairing algorithm was constructed on the 
basis of all phenotypes that showed significant association (P < 0.05) 
with microbiome composition or function in the above univariate 
analyses. The pairwise Euclidean distances were computed between 
the children considered neurotypical (n = 709) and participants with 
ASD (n = 374) on the basis of the above set of matching variables that 
were normalized to zero-mean and unit variance (centred and scaled). 
Subsequently, a child with ASD and the closest neurotypical child were 
removed from the selection group and then added to the subcohort. 
The selection process was successive until no children considered 
neurotypical remained in the selection group. If multiple ASD samples 
shared the closest distance with children considered neurotypical, a 
random ASD sample was selected and moved into the subcohort. The 
one-by-one pairing was done independently by sex. Finally, a total of 
301 children considered neurotypical (95 girls and 206 boys) and 301 
children with ASD (95 girls and 206 boys) were employed in the subco-
hort with a balanced number of cases and controls.

Random forest binary classifier
Machine learning binary classifier used random forest through the 
package randomForest (v.4.7-1.1) in R (4.1.3), as this algorithm has been 
shown to outperform, on average, other learning tools for microbiota 
data in previous studies42,59. Normalized abundance tables were used 
to train the model. Machine learning models were first trained on 
the randomly selected training set (70%, 5-fold cross-validation) and 
then applied to the withheld test set (30%) to assess performance. 
Then, we tuned hyperparameters (for example, mtry, ntree, nodesize, 
maxnodes) using the caret package (v.6.0-88) on the basis of the model 
performance in the test set to avoid overfitting issues. Finally, with 
the best combination of hyperparameters, the random split of the 
cohort was repeated 20 times to obtain a distribution of random for-
est prediction evaluations on the test set, and the mean AUC value was 
calculated accordingly for visualization of results. The highest-ranked 
and frequently selected microbial features were considered predictive 
signatures for further interpretation. We retrieved prediction perfor-
mance for each feature using the same training datasets. The trained 
models were then tested in the independent validation cohorts to 
assess their robustness, which was assessed by AUC calculated using 
predicted probabilities. Considering the potentially unbalanced 
covariates between children with ASD and children considered neu-
rotypical in the independent hospital cohort and community cohort, 
corresponding adjusted AUCs were calculated after adjustment for 
technical factors and available covariates including age, sex, BMI, 

BSBF, functional constipation and defecation disorders using the R 
package ‘pROC’ (v.1.18.5).

Public data download and processing
For the construction of the external dataset, a total of 353 raw shotgun 
faecal metagenomes were obtained from six independently published 
studies across four countries36–41. After removing studies with sequenc-
ing depth less than 4 GB (n = 32) and those without metadata (n = 84), a 
total of 237 samples were included in the final analyses. Quality filtra-
tion and species-/function-level profiling were performed according 
to the above standardized process. The trained model using 31 markers 
was then tested in the public dataset to assess its robustness as assessed 
by AUC calculated using predicted probabilities. Adjusted AUCs were 
calculated after adjustment for available covariates, including age, sex 
and batch effects (defined by different studies), from public datasets 
using the R package ‘pROC’ (v.1.18.5).

Statistical analysis
No statistical method was used to predetermine sample size. No data 
were excluded from the analyses. Statistical analyses were done using 
R v.4.1.3. Considering that microbial data are sparse with a non-normal 
distribution, relevant statistics using relative abundance were per-
formed using the ggpubr (v.0.6.0) package (https://github.com/kas-
sambara/ggpubr) with non-parametric tests, such as the Wilcoxon 
rank-sum test. Multiple hypothesis testing corrections were done using 
the false discovery rate (FDR) method.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The metagenomic sequencing data generated in this study have been 
deposited in the NCBI Sequence Read Archive database under acces-
sion code PRJNA943687. The publicly available raw sequencing data 
were downloaded through the retrieved accession numbers from 
cited papers, including GSE113540, PRJNA516054, PRJNA782533, 
CRA004105, PRJEB23052 and CRA001746. Mammalian genomes 
including hg38, felCat8, canFam3, mm10, rn6, susScr3, galGal4 and 
bosTau8 are available in UCSC Genome Browser at https://genome.
ucsc.edu. Bacterial plasmids, complete plastomes, UniVec sequences 
and reference genomes database consisting of bacterial, archaeal 
and viral reference genomes are available in NCBI RefSeq database at 
https://www.ncbi.nlm.nih.gov/refseq. Fungal reference genomes are 
available in NCBI RefSeq database (https://www.ncbi.nlm.nih.gov/
refseq), FungiDB (http://fungidb.org) and Ensemble (http://fungi.
ensembl.org). Source data are provided with this paper.

Code availability
All software used are from publicly available sources. Codes used  
for the microbiome analyses or figures are available via GitHub at 
https://github.com/qsu123/ASD_multi-kingdom_diagnosis ref. 81.
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Extended Data Fig. 1 | Overview of microbial composition in four kingdoms 
across cohorts. a, Composition of archaea, bacteria and fungi was shown at 
phylum level and composition of virus was shown at family level. Top 5 abundant 

phyla or families are shown in the pie chart and others are summed into others.  
b, Principal components analysis of gut microbiome composition across different 
cohorts. c, Differential taxa across different cohorts identified by MaAsLin2.
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Extended Data Fig. 2 | The influence of individual phenotypic factor on 
the multi-kingdom microbiome (archaea, bacteria, fungi and viruses) 
composition assessed by multivariate PERMANOVA analysis (two-sided 

test) in the discovery cohort (709 ASD and 374 NT). Phenotypic factors with a 
significant (p < 0.05) influence on each kingdom were marked with *. ASD, autism 
spectrum disorder; NT, neurotypical.
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Extended Data Fig. 3 | The influence of individual phenotypic factor on 
the microbiome function (KO genes and MetaCyc pathways) assessed by 
multivariate PERMANOVA analysis (two-sided test) in the discovery cohort 

(709 ASD and 374 NT). Phenotypic factors with a significant (p < 0.05) influence 
on each kingdom were marked with *. KO, Kyoto Encyclopedia of Genes and 
Genomes orthology. ASD, autism spectrum disorder; NT, neurotypical.
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Extended Data Fig. 4 | Matched confounders between ASD (n = 301) and 
NT (n = 301) in the balanced sub-cohort constructed by one-by-one 
pairing algorithm, including age (a), BMI (b), sex (c), sequencing batch (d), 
GI parameters (e) and dietary factors (f ). Continuous data were compared 
using two-sided Mann-Whitney U test (two-sided test) and shown via the 
median (centre line), 25th and 75th percentiles (box limits) and the 5th and 95th 

percentiles (whiskers). Categorical variables were presented as proportions  
and were compared using two-sided Chi-squire test or Fisher’s exact test 
(expected count<5). Dietary patterns were assessed by principal components 
analysis. BMI, body mass index; GI, gastrointestinal. ASD, autism spectrum 
disorder; NT, neurotypical.
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Extended Data Fig. 5 | Validation of trained models in children under 6 
years of age (14 ASD and 17 NT) in the independent hospital cohort. AUC 
were calculated after adjustment for technical factors and available covariates 

including age, sex, body mass index, Bristol stool form scale, functional 
constipation and defecation disorders. ASD, autism spectrum disorder; NT, 
neurotypical.
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Extended Data Fig. 6 | Associations between ASD and 31 markers in the independent community cohort (stratified by age) assessed by MaAsLin 2 (two-sided 
test). The Coef value of each association was only marked when p value less than 0.05. ASD, autism spectrum disorder; NT, neurotypical.
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Extended Data Fig. 7 | Validation of model using 31 markers on the public 
dataset. a, Construction of an external validation cohort of ASD from six 
published studies. b, Area under the Curve of model using 31 markers tested in 
the public dataset. AUC were calculated after adjustment for available covariates 

from public datasets including age, sex, and batch effects (defined by different 
studies). P values were calculated by Wilcoxon rank-sum test (two-sided test). 
ASD, autism spectrum disorder; NT, neurotypical.
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Extended Data Fig. 8 | Decreased abundance of ubiquinol-7 and thiamine 
diphosphate biosynthesis genes in ASD children across different cohorts. 
Associations between ubiquinol-7 and thiamine diphosphate biosynthesis genes 

and ASD were assessed by MaAsLin 2 (two-sided test). The Coef value of each 
association was only marked when p value less than 0.05. ASD, autism spectrum 
disorder; NT, neurotypical.
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Extended Data Table 1 | Demographics of subjects recruited in this study

Notes: ASD, autism spectrum disorder; NT, neurotypical; ADHD, attention deficit hyperactivity disorder; ave, average; IQR, interquartile range.
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Extended Data Table 2 | Validation of model using 31 markers on the independent community cohort

Notes: ASD, autism spectrum disorder; NT, neurotypical; AUC, area under curve. AUC were calculated after adjustment for technical factors and available covariates including age, gender, 
BMI, BSBF, functional constipation and defecation disorders.
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